PII: S0040-4020(96)00934-9

Asymmetric Synthesis of Bicyclopropane Derivatives

Anthony G. M. Barrett, a* Wendel W. Doubleday, b and Gary J. Tustina.

^aDepartment of Chemistry, Imperial College of Science, Technology & Medicine, London SW7 2AY, U.K. ^bDepartment of Chemistry, Colorado State University, Fort Collins, CO, 80523, U.S.A.

Abstract: Both syn- and anti-bicyclopropane derivatives have been efficiently prepared with good relative and absolute stereocontrol using reagent controlled asymmetric cyclopropanation reactions. Double Simmons-Smith cyclopropanation of 2,4-dien-1-ols stereoselectively gave the corresponding anti-bicyclopropane derivatives. Copyright © 1996 Elsevier Science Ltd

In 1990 Yoshida and coworkers at Fujisawa reported the isolation of FR-900848 from the fermentation broth of *Streptoverticillium fervens*. The structure of this new natural product was established, by extensive NMR spectroscopy and partial degradation, to be the structurally remarkable pentacyclopropane nucleoside 1. However, the full stereochemistry of FR-900848 (1) was only established by the synthesis of model multiple cyclopropane arrays, degradation studies and total synthesis carried in our own laboratories. Falck and coworkers have also recently reported a second total synthesis of FR-900848 (1). Shows potent, selective activity against filamentous fungi such as *Aspergillus niger*, *Mucor rouxianus*, *Aureobasidium pullulans*, and various *Trichophyton* sp. etc. In contrast it is essentially inactive against non-filamentous fungi including *Candida albicans* and Gram -positive and -negative bacteria. It shows activity *in-vivo* and is not appreciably toxic. FR-900848 (1) is closely related to the cholesteryl ester transfer protein inhibitor U-106305 (2) from the fermentation broth of *Streptomyces* sp. UC 11136. We have recently fully assigned the stereochemistry of this remarkable fatty amide by total synthesis. We have recently fully assigned the stereochemistry of this remarkable fatty amide by total synthesis.

There is an extensive literature on the synthesis and reactions of bicyclopropane arrays. For example, Buchert and Reissig⁹ have reported the synthesis of highly substituted bicyclopropanes. In addition, Nijveldt and Vos have carried out an X-ray crystallographic study of bicyclopropane. ¹⁰ Prior to the discovery of FR-900848 (1), little attention was paid to issues of stereochemistry in bicyclopropane chemistry. Recently, ourselves ¹¹⁻¹³ and the Zercher ^{14,15} and Armstrong ¹⁶ groups have independently reported stereoselective methods for the preparation of bicyclopropane systems relevant to the total synthesis of FR-900848 (1). All of these approaches have applied known asymmetric Simmons-Smith reactions to control all four stereocentres in the assembly of 1,6-disubstituted bicyclopropanes. Herein we report full experimental

details of the stereoselective synthesis of *syn*- and *anti*- bicyclopropane arrays using Yamamoto¹⁷ and Fujisawa¹⁸ asymmetric cyclopropanation reactions.

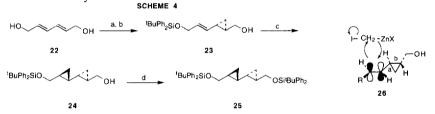
Results and Discussion

trans-Cinnamaldehyde 3 was converted, via the chiral acetal 4 and Yamamoto asymmetric Simmons-Smith cyclopropanation, into the phenyl-substituted cyclopropyl acetal 5^{17} in good diastereoisomeric excess (>85 %). Separation of the acetal diastereoisomers by chromatography and acid mediated hydrolysis of the major isomer gave the enantiomerically pure cyclopropanecarboxaldehyde derivative 6. Horner-Emmons homologation and DIBAL-H reduction gave the corresponding trans-allylic alcohol 7. Reaction of allylic alcohol 7 with diethylzinc and diiodomethane in the presence of L(+)-diethyl tartrate according to the Fujisawa protocol 18 afforded both the syn- and anti- bicyclopropyl derivatives 8 and 10 (72%, 6:1) (Scheme 1) as an inseparable mixture of isomers. Alternatively, reaction of allylic alcohol 7 with diethylzinc and diiodomethane in the presence of D(-)-diethyl tartrate gave both bicyclopropanes 8 and 10 (84%, 1:6).

Reagents and conditions: (a) (EtO)₃CH, NH₄NO₃, EtOH, 25 °C; (b) L(+)-diisopropyl tartrate, TsOH, PhH, 80 °C; (c) Et₂Zn, CH₂l₂, PhMe, -20 °C; (d) TsOH, H₂O, THF, 60 °C; (e) (EtO)₂P(O)CH₂CO₂Et, NaH, THF, 0 °C; (f) DIBAL-H, CH₂Cl₂, -78 °C; (g) L(+)-diethyl tartrate, Et₂Zn, CH₂l₂, CICH₂Cl₂-12 °C; (h) PCC, NaOAc, SiO₂, CH₂Cl₂, 0 °C; (j) (1*R*,2*R*)-*N*.*N*-dimethyl-1,2-diphenylethanediamine, Et₂O, 4Å sieves, 25 °C; (j) D(-) diethyl tartrate, Et₂Zn, CH₂l₂, CICH₂CH₂Cl, -12 °C.

Again, the mixture of *syn-* 8 and *anti-* 10 isomers could not be separated. Treatment of allylic alcohol 7 with diethylzinc and diiodomethane with the absence of tartrate esters generated compounds 8 and 10 (90%, ~1: 1) in 82 % yield. All of these experiments were carried out in parallel in the enantiomeric series of bicyclopropanes. In each case the ratio of diastereoisomers 8 and 10 were determined by ¹³C nmr spectroscopy, ¹⁹ HPLC analysis and derivatisation (*vide infra*). It is clear that from these observations the pre-existing cyclopropane ring in alkene 7 has little or no influence on the stereochemical outcome of the second cyclopropanation reaction. Thus, *syn-* or *anti-* bicyclopropanes can be prepared *via* reagent control of stereochemistry. Zercher has observed ¹⁴ comparable stereochemical results on the generation of the bicyclopropanes 8 and 10 using Charette asymmetric cyclopropanation reactions. ^{20,21} In addition, this group has used double Charette asymmetric cyclopropanation chemistry to elaborate various bicyclopropanes with

the *cis-trans*- and *cis-cis* ring stereochemistries. During these studies this group noted, in some cases, that the pre-existing cyclopropane ring dramatically influenced the stereochemistry of the second cyclopropanation reaction and representative examples of this chemistry are outlined in Scheme 2.


The structural assignments of the *syn*- and *anti*-bicyclopropanes **8** and **10** were established by derivatisation and an X-ray crystallographic study. Thus, PCC oxidation of the mixture of alcohols **8** and **10** (6:1) and subsequent condensation with (1R,2R)-N,N'-dimethyl-1,2-diphenylethanediamine ^{22,23} led to the formation of the imidazolidines **9** and **11** (90%, 6:1). The ratio of isomers was determined by ¹H nmr spectroscopy (500 MHz) and integration of the signals for the *N*-methyl substituents. The major isomer **9** was isolated by fractional recrystallisation from acetone and water and this gave material suitable for single crystal *X*-Ray analysis. The crystal structure of imidazolidine **9**¹¹ enabled us to determine the relative and absolute stereochemistry of all cyclopropane derivatives in Scheme 1. It is clear from this analysis that, reagent control *via* Fujisawa¹⁸ asymmetric cyclopropanation can be used to prepare the bicyclopropane stereoisomers **8** and **10** selectively.

* Structures refer to racemic modifications

Reagents and conditions: (a) Et₂Zn, CH₂I₂ CICH₂CH₂CI, -20 ℃

We next sought to examine the stereochemistry of cyclopropanation of 2-alkenyl-1-cyclopropanemethanol derivatives 19. In these substrates the hydroxyl group is remote from the alkene residue and such compounds are better probes for any stereoelectronic bias of pre-existing cyclopropane rings on further cyclopropanation reactions. We therefore sought to examine the double cyclopropantion of dienols 18 since hydroxyl direction²⁴ should result in fast cyclopropanation of Δ^2 and subsequent slower cyclopropanation of Δ^4 . The 2,4-dienols 18 were prepared from reaction of the corresponding (E)- $\alpha\beta$ -unsaturated aldehydes (RCH=CHCHO)²⁵ with ethyl (diethoxyphosphono)acetate²⁶ in the presence of sodium hydride and subsequent DIBAL-H reduction.²⁷ 5-Phenyl-2E,4E-pentadien-1-ol (18, R = Ph) was allowed to react with diethylzinc and diiodomethane in 1,2-dichloroethane at -20 °C to generate the corresponding bicyclopropane derivatives 20 and 21 (Scheme 3). Much to our delight the reaction was shown to proceed in high yield (80%) and with good diastereoselectivity favouring the racemic anti-bicyclopropane derivative 20. The selectivity of the reaction was determined by ¹³C NMR spectroscopy¹⁹

and this was consistent with an anti- 20 (R = Ph) : syn- 21 (R = Ph) isomer ratio of 5 : 1. The cyclopropanation reaction was extended to four further 2,4-dienols 18 (Scheme 3). In each case double cyclopropanation of the 2,4-dienols 18 gave the corresponding racemic bicyclopropanemethanols 20 and 21 in good yields (61-78%). Additionally in each case, the reaction led to the predominant formation of the anti-diastereoisomer 20 [20 : 21 = 5 : 1 (R = Me), 6 : 1 (R = iso Pr), 7 : 1 (R = c-C₆H₁₁), >95 : 5 (R = tBuPh₂SiOCH₂)]. In each case diastereoselectivity of reaction was determined by ¹³C NMR spectroscopy. ¹⁹ In all four cases structural assignment of the major isomer 20 rests on analogy with bicyclopropane 20 (R = Ph). However, in one case 20 (R = ${}^{1}BuMe_{2}SiOCH_{2}$), the assignment of anti-stereochemistry was further substantiated by an alternative synthesis and chiroptical analysis (Scheme 4). Thus the mono-cyclopropane derivative 23 ($[\alpha]_D = -12.7^\circ$) was prepared from diethyl muconate²⁸ via DIBAL-H reduction to (E,E)-2,4hexadiene-1,6-diol, mono-protection (47 %) and asymmetric monocyclopropanation in the presence of L(+)diethyl tartrate (67 %), ¹⁸ Subsequent cyclopropanation of 23 gave the corresponding bicyclopropyl alcohol derivative 24 (79 %; $[\alpha]_D = -9.2^\circ$). In this experiment, the major non-racemic product 24 was spectroscopically identical with the product derived from the direct double cyclopropanation of dienol 18 (R = tBuMe₂SiOCH₂). Finally, t-butyldiphenylsilylation of the alcohol **24** gave the corresponding disilyl ether 25 (82 %; $[\alpha]_D = -0.2^\circ$). The low optical rotation of this substance is fully in agreement with an assignment of meso-stereochemistry.

Reagents: (a) t-BuPh₂SiCl, imidazole, DMF; (b) El_2Zn , CH_2l_2 , $CICH_2CH_2Cl$, L(+) diethyl tartrate, -20 °C; (c) El_2Zn , CH_2l_2 , $CICH_2CH_2Cl$, -20 °C; (d) t-BuPh₂S+iCl, imidazole, DMF.

It is necessary to briefly comment on the origin of stereocontrol of the double cyclopropanation reactions in Scheme 3. It is known that cyclopropanation of allylic alcohols proceeds much faster than those of isolated alkenes due to precoordination of the zinc carbenoid to the hydroxyl group prior to methylene transfer. ²⁴ On this basis, it is reasonable to propose that the conversion of the 2,4-dienols 18 into adducts 20 and 21 proceeded *via* the intermediacy of the racemic mono-cyclopropane 19 only. Indeed in several cases the monocyclopropane 19 (R = Ph) was observed in the 1 H and 13 C nmr spectra of incomplete double cyclopropanation reaction mixtures. Secondly, the monocyclopropanation of the unsaturated allylic ether 23 is fully consistent with the results obtained on the double cyclopropanation of 2,4-dienols 18 (R = 1 BuMe₂SiOCH₂) further supporting the intermediacy of alkene 19 (R = 1 BuMe₂SiOCH₂). It is reasonable to speculate that the alkenes 19 are subject to both steric and stereoelectronic control of the second cyclopropanation step (see diagram 26). In this analysis, overlap of the most electron rich cyclopropane σ -bond (bond a not bond b) with the alkene π -system should enhance its nucleophilicity and favour *anti*-delivery of the zinc carbenoid electrophile. Additionally, the cyclopropane ring in 26 should shield one face of the π -system thereby biasing the direction of methylene transfer. Fortunately, both these effects are

complimentary. This analysis is also consistent with the enhanced *anti*-stereoselectivity seen with alkene 18 ($R = {}^{t}BuMe_{2}SiOCH_{2}$). In this case, the electron withdrawing ether group should deactivate the alkene thereby emphasising $\sigma \rightarrow \pi^{*}$ delocalisation.

It is clear from these results that the presence of a cyclopropane ring system has a significant effect upon adjacent cyclopropanation reactions. However this stereoelectronic control may be overwhelmed if the second ring is introduced at a double bond adjacent to a hydroxymethyl substituent.

EXPERIMENTAL

General Methods. All reactions were carried out in an atmosphere of dry nitrogen at room temperature unless otherwise stated. Hexanes refers to bp 40-60 °C redistilled petroleum ether (petrol). The following reaction solvents were purified by distillation: 1,2-dichloroethane (ClCH₂CH₂Cl) (CaH₂, N₂), diethyl ether (Et₂O) (Ph₂CO/Na, N₂), water (H₂O), tetrahydrofuran (THF) (Ph₂CO/K, N₂), and toluene (PhMe) (P₂O₅, N₂). The following organic reagents were purified by distillation: diiodomethane (CH₂I₂) (Cu powder, 2 mm Hg), pyridine (CaH₂, 12 mm Hg), triethylamine (Et₃N) (CaH₂, N₂), and all aldehydes. All other organic solvents and reagents were obtained from commercial sources and used without further purification. Organic extracts were dried over magnesium sulfate. Flash chromatography²⁹ was carried out on Merck or BDH silica gel 60, 230-400 mesh ASTM with eluants given in parenthesis. Involatile oils and solids were vacuum dried at < 2 mm Hg. Analytical thin-layer chromatography (TLC) was performed on Merck precoated silica gel 60 F₂54 plates. Optical rotations were carried out at room temperature in chloroform solution.

Ethyl 3*E*-[(1*S*,2*R*)-2-Phenyl-1-cyclopropyl]prop-1-enoate. Hexane (10 mL) washed NaH (60 % disp.) (600 mg, 14 mmol) and THF (25 mL) were cooled to 0 °C and (EtO)₂P(O)CH₂CO₂Et (3.10 g, 14 mmol) was added dropwise and the mixture was stirred for 1 h. After cooling to -78 °C, aldehyde **6** (2.05 g, 14.0 mmol) in THF (5 mL) was added and the mixture was warmed up to room temperature and quenched with saturated aqueous NH₄Cl (20 mL) and diluted with H₂O (50 mL). The mixture was extracted with Et₂O (2 x 50 mL) and the organic phase washed with H₂O (2 x 50 mL) and brine (2 x 50 mL), dried and filtered. Rotary evaporation and chromatography (hexanes : EtOAc 9 : 1) gave ethyl 3*E*-[(1*S*,2*R*)-2-phenyl-1-cyclopropyl]-prop-1-enoate (2.76 g, 91 %) as a colorless oil: R_f 0.70 (hexanes : EtOAc; 4 : 1); [α]_D -294° (c = 1.0); IR (film) 1713, 1645, 1258 and 1146 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.27 (m, 3H), 7.12 (m, 2H), 6.60 (dd, 1H, *J* 15.4, 9.8 Hz), 5.90 (d, 1H, *J* 15.6 Hz), 4.21 (q, 2H, *J* 7.2 Hz), 2.16 (m, 1H), 1.82 (m, 1H), 1.43 (m, 1H), 1.30 (m, 1H), 1.28 (t, 3H, *J* 7.2 Hz); ¹³C NMR (CDCl₃, 67.8 MHz) δ 166.6, 151.5, 140.7, 128.5, 126.2, 125.9, 118.8, 60.1, 26.8, 26.7, 17.7, 14.3; MS (EI) m/z 216 (M+·), 143, 97. Anal. calc for C₁₄H₁₆O₂: C, 77.70; H, 7.46. Found: C, 77.89; H, 7.17%. Ethyl 3*E*-[(1*R*, 2*S*)-2-phenyl-1-cyclopropyl]-prop-1-enoate (2.56 g, 87 %) was prepared in exactly the same way from the enantiomer of aldehyde **6**: [α]_D +295° (c = 1.0); Found: C, 78.03; H, 7.32%.

3E-[(1S,2R)-2-Phenyl-1-cyclopropyl]-2-propen-1-ol (7). DIBAL-H (1.0 M solution in hexanes) (22.7 mL, 22.7 mmol) was added dropwise to ethyl 3E-[(1S,2R)-2-phenyl-1-cyclopropyl]prop-1-enoate (2.23 g, 10)

mmol) in CH₂Cl₂ (20 mL) at -78 °C. After stirring at -78 °C for 1h, the mixture was quenched with saturated aqueous Na₂SO₄ (10 mL), warmed up to room temperature, filtered through Celite (CH₂Cl₂). Rotary evaporation and chromatography (hexanes : EtOAc 4 : 1) gave 7 (1.50 g, 84 %) as a colorless oil: (R_f 0.15 (hexanes : EtOAc 4 : 1) [α]_D -265° (c = 1.83); IR (film) 3360, 1668, 1605, 963 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.27-7.01 (m, 5H), 5.70 (1H, dt, J 15.4, 5.9 Hz), 5.37 (1H, dd, J 15.4, 8.5 Hz), 4.05 (2H, d, J 6.0 Hz), 2.07 (1H, br s), 1.93-1.86 (1H, m), 1.69-1.61 (1H, m), 1.18 (1H, dt, J 8.5, 5.1 Hz), 1.07 (1H, dt, J 8.5, 5.4 Hz); ¹³C NMR (CDCl₃, 75.1 MHz) δ 142.1, 135.0, 128.3, 127.4, 125.6, 63.3, 26.1, 25.2, 16.7; MS (CI, NH₃) m/z 192 (M+NH₄)+, 174 (M+H)+, 157, 143, 91; HRMS calc for C₁₂H₁₄O: (M+·), 174.1045, found: (M+·) 174.1045. 3E-[(1R, 2S)-2-Phenyl-1-cyclopropyl]-2-propen-1-ol (1.59 g, 91%) was prepared in exactly the same way from the corresponding ester: [α]_D +245° (c = 1.8); HRMS found: (M+·), 174.1014. Anal. calc for C₁₂H₁₄O: C, 82.72; H, 8.10. Found: C, 82.59; H, 7.98%.

(1R,3S,4S,6R)-1-Hydroxymethyl-6-phenylbicyclopropane (8). Et₂Zn in hexanes (1.0 M; 0.48 mL, 0.48 mmol) was added dropwise with stirring to the allylic alcohol 7 (75 mg, 0.43 mmol) in ClCH₂CH₂Cl (3 mL) at 0 °C. After 0.5 h, L(+)-diethyl tartrate (99 mg, 0.48 mmol) in ClCH₂CH₂Cl (1 mL) was added and the reaction mixture was stirred for 1 h, cooled to -12 °C and Et₂Zn (0.89 mL, 0.89 mmol) was added. After 1 h, CH₂I₂ (0.46 g, 0.15 mL, 1.75 mmol) was added and the resulting solution stirred at -12 °C for 12 h. quenched with saturated aqueous NH₄Cl (5 mL), and extracted with Et₂O (2 x 15 mL). The organic phase was washed with 10 % NH₄Cl (15 mL), H₂O (2 x 15 mL), and brine (2 x 15 mL), dried and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 4:1) gave 8 admixed with 10 (6:1; 58 mg, 72 %) as a colorless oil: R_f 0.20 (hexanes: EtOAc 4:1); IR (film) 3360, 2871, 1605, 1499, 1021, 745, 697 cm⁻¹: ¹H NMR (CDCl₃, 270 MHz) δ 7.27-7.00 (m, 5H), 3.49-3.42 (m, 2H), 1.74 (br s, 1H), 1.68-1.62 (m, 1H), 1.16-1.08 (m, 1H), 0.98-0.73 (m, 4H), 0.47-0.36 (m, 2H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 143.8, 128.3, 125.6, 125.4, 66.8, 24.4, 22.2, 20.0, 18.6, 14.0, 8.0; MS (CI, NH₃) m/z 206 (M+NH₄)+, 188 (M+·), 171, 77. Anal. calc. for C₁₃H₁₆O: C, 82.94; H, 8.57. Found: C, 83.13; H, 8.74 %. (1S,3R,4R,6S)-1-Hydroxymethyl-6phenylbicyclopropane (63 mg, 78 %), prepared from the corresponding allylic alcohol using D(-)-diethyl tartrate in the second cyclopropanation step, was obtained as a colorless oil: HRMS (CI, NH₃) calcd for C₁₃H₁₆O: (M+NH₄)+, 206.1545; found: (M+NH₄)+, 206.1558

(15,3R,4S,6R)-1-Hydroxymethyl-6-phenylbicyclopropane (10). Reaction of allylic alcohol 7 with $D(\cdot)$ -diethyl tartrate, Et₂Zn, and CH₂I₂ as for 8 gave 10 admixed with 8 (6 : 1; 68 mg, 84 %) as a colorless oil: R_f 0.20 (hexanes : EtOAc 4 : 1); IR (film) 3360, 2923, 1605, 1498, 1029, 697 cm⁻¹; 1 H NMR (CDCl₃, 270 MHz) δ 7.27-7.00 (m, 5H), 3.5-3.4 (m, 2H), 1.74 (br s, 1H), 1.68-1.62 (m, 1H), 1.16-1.08 (m, 1H), 0.98-0.73 (m, 4H), 0.47-0.36 (m, 2H); 13 C NMR (CDCl₃, 75.1 MHz) δ 143.3, 128.3, 125.6, 125.4, 66.7, 24.5, 21.9, 19.5, 18.7, 14.5, 8.7; MS (CI, NH₃) m/z 206 (M+NH₄)+, 188 (M+·), 171, 157, 129. Anal. calcd for C₁₃H₁₆O: C, 82.94; H, 8.57. Found: C, 83.04; H, 8.70%. (1R,3S,4R,6S)-1-Hydroxymethyl-6-phenylbicyclopropane (61 mg, 0.32 mmol, 75 %), prepared from the corresponding allylic alcohol using L(+)-diethyl tartrate in the second cyclopropanation step, was obtained as colorless oil: HRMS (CI, NH₃) calcd for C₁₃H₁₆O: (M+NH₄)+, 206.1545; found: (M+NH₄)+, 206.1554.

(1.15 mmol) was added dropwise with stirring to allylic alcohol 7 (75 mg, 0.43 mmol) in ClCH₂CH₂Cl (3 mL) at -10 °C. After 0.5 h, CH₂I₂ (1.15 g, 0.37 mL, 4.3 mmol) was added, stirring was continued at -10 °C for 12 h, the mixture was quenched with saturated aqueous NH₄Cl (5 mL) and extracted with Et₂O (2 x 5 mL). The organic phase was washed with 10 % NH₄Cl (5 mL), H₂O (2 x 10 mL), and brine (2 x 10 mL), dried and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 4:1) gave 8 admixed with 10 (1:1; 73 mg, 0.38 mmol, 90 %) as a colorless oil. (1RS, 3RS, 4R, 6S)-1-Hydroxymethyl-6-phenylbicyclopropane was prepared from the reaction of the corresponding allylic alcohol with Et₂Zn and CH₂I₂ in exactly the same way.

(4R,5R)-2-[(1R,3S,4S,6R)-6-Phenyl-1-bicyclopropyl]-1,3-dimethyl-4,5-diphenylimidazolidine (9). Pyridinium chlorochromate (119 g, 0.55 mmol), NaOAc (45 mg, 0.55 mmol) and silica gel (200 mg) were added to alcohol 8 admixed with 10 (6:1; 69 mg, 0.37 mmol) in CH₂Cl₂ (2 mL) at 0 °C. After 1 h at 0 °C and 1 h at room temperature, the mixture was filtered through silica (CH₂Cl₂) and evaporated to give (1R,3S,4S,6R)-6-phenylbicyclopropane-1-carboxaldehyde (66 mg, 0.37 mmol, 97 %) as a colorless oil. This was dissolved in Et₂O (10 mL) with (1R,2R)-N,N-dimethyl-1,2-diphenylethanediamine (120 mg, 0.5 mmol) and the solution stirred with 4Å molecular sieves for 12 h. H₂O (10 mL) was added and the mixture extracted with Et₂O (2 x 10 mL). The organic phase was washed with H₂O (2 x 10 mL) and brine (2 x 10 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 9:1) gave imidazolidine 9 (139 mg, 0.34 mmol, 90 %) as a white solid: R_f 0.15 (hexanes: EtOAc; 19:1); $[\alpha]_D$ -17.6° (c = 1.0); IR (film) 3028, 2995, 2980, 1610, 1494, 1451, 1282, 1164, 1025 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.4 - 7.1 (m, 15H), 3.75 (d, 1H, J 8.7 Hz), 3.44 (d, 1H, J 8.4 Hz), 3.23 (d, 1H, J 8.4 Hz), 2.54 (3H, s), 2.38 (3H, s), 1.80 (m, 1H), 1.20 (m, 1H), 1.05 (m, 2H), 0.83 (m, 2H), 0.69 (m, 2H); ¹³C NMR (CDCl₃, 125.8 MHz) δ 143.5, 139.9, 128.4, 128.2, 128.1, 127.4, 127.3, 125.7, 125.4, 89.3, 78.5, 77.0, 39.4, 36.0, 25.0, 22.6, 19.8, 16.9, 13.2, 7.6; MS (CI, NH₃) m/z 409 (M+H)+, 289, 251, 183; HRMS calc for C₂₉H₃₂N₂: (M+H)+, 409.2644; found: (M+H)+, 409.2652.

(4*R*,5*R*)-2-[(1*S*,3*R*,4*S*,6*R*)-6-Phenyl-1-bicyclopropyl]-1,3-dimethyl-4,5-diphenylimidazolidine (11). Oxidation of alcohol 10 (176 mg. 0.93 mmol) and condensation with (1R,2R)-N,N-dimethyl-1,2-diphenylethanediamine gave imidazolidine 11 admixed with 9 (6 : 1; 84%) as a colorless oil: R_f 0.15 (hexanes : EtOAc; 19 : 1); 1 H NMR (CDCl₃, 270 MHz) δ 7.4-7.2 (m, 15H), 3.69 (d, 1H, J 8.5 Hz), 3.38 (d, 1H, J 8.5 Hz), 3.16 (d, 1H, J 8.5 Hz), 2.47 (3H, s), 2.36 (3H, s), 1.80 (m, 1H), 1.25 (m, 1H), 1.05 (m, 1H), 0.85 (m, 3H), 0.65 (m, 2H); MS (CI, NH₃) m/z 409 (M+H)+, 289, 251; HRMS calc for C_{29} H₃₂N₂: (M+H)+, 409.2644; found: (M+H)+, 409.2659.

Ethyl (2*E*,4*E*)-5-Phenyl-2,4-pentadienoate. (EtO)₂P(O)CH₂CO₂Et (2 mL, 0.01 mL) was added dropwise to hexane (5 mL) washed NaH (60 % dispersion; 400 mg, 0.01 mol) and THF (5 mL) at °C. After 5 min the mixture was cooled to -78 °C and cinnamaldehyde (1.26 mL, 0.01 mol) was added dropwise, the solution was allowed to warm up to room temperature, and quenched with saturated aqueous NH₄Cl (20 mL). The mixture was extracted with Et₂O (2 x 20 mL) and the organic phase was washed with H₂O (2 x 20 mL) and brine (2 x 20 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 9:1) gave

ethyl (2*E*,4*E*)-5-phenyl-2,4-pentadienoate (1.5 g, 74 %) as a colorless oil: R_f 0.20 (hexanes : EtOAc 19 : 1); IR (film) 3026, 2981, 1707, 1626, 1341, 1314, 1297, 1239, 1133, 1037, 998, 755, 714, 689 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.50-7.25 (m, 6H), 6.87 (m, 2H), 5.99 (d, 1H, *J* 15.1 Hz), 4.24 (q, 2H, *J* 7.2 Hz), 1.31 (t, 3H, *J* 7.2); ¹³C NMR (CDCl₃, 67.8 MHz) δ 167.1, 144.6, 140.4, 136.2, 129.1, 128.9, 127.3, 126.4, 121.5, 60.4, 14.4; MS (EI) m/z 202 (M⁺⁻), 173, 157, 129, 77; HRMS (EI) calcd for C₁₃H₁₄O₂: (M⁺⁻), 202.0994; found: (M⁺⁻), 202.0999. Anal. calcd for C₁₃H₁₄O₂: C, 77.2; H, 6.98. Found: C, 76.96; H, 6.88%.

(2*E*,4*E*)-5-Phenyl-2,4-pentadienol (18, R = Ph). DIBAL-H in hexanes (1.0 M; 13 mL, 13.0 mmol) was added dropwise with stirring to ethyl (2*E*,4*E*)-5-phenyl-2,4-pentadienoate (1.2 g, 6.0 mmol) in CH₂Cl₂ (30 mL) at -78 °C. After 1 h, EtOH (20 mL) and saturated aqueous Na₂SO₄ (10 mL) were added and the mixture was allowed to warm up to room temperature and filtered through Celite (CH₂Cl₂). Evaporation and recrystallization from EtOAc/hexanes gave 18 (R = Ph) (0.91 g, 5.7 mmol, 95 %) as a white solid: mp 57-59 °C; R_f 0.20 (hexanes : EtOAc 4 : 1); IR (film) 3300, 1448, 1085, 981, 742, 690 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.4-7.2 (m, 5H), 6.79 (dd, 1H, *J* 15.6, 10.5 Hz), 6.55 (d, 1H, *J* 15.6 Hz), 6.43 (dd, 1H, *J* 15.1, 10.5 Hz), 5.98 (dt, 1H, *J* 15.1, 5.9 Hz), 4.25 (d, 2H, *J* 5.6 Hz), 1.70 (br s, 1H); ¹³C NMR (CDCl₃, 67.8 MHz) δ 137.2, 132.9, 132.6, 131.7, 128.7, 128.2, 127.7, 126.5, 63.5; MS (EI) m/z 160 (M+·), 131, 104, 91, 77. Anal. calcd for C₁₁H₁₂O: C, 82.45; H, 7.56. Found: C, 82.71; H, 7.49%.

(1*SR*,3*RS*,4*SR*,6*RS*)-1-Hydroxymethyl-6-phenylbicyclopropane (20, R = Ph). With stirring Et₂Zn in hexanes (1.0 M; 5 mL, 5 mmol) and CH₂I₂ (0.9 mL, 10 mmol) were added sequentially and dropwise to diene 18 (R = Ph) (80 mg, 0.5 mmol) in ClCH₂CH₂Cl (3 mL) at -12 °C. After 12 h at -12 °C, saturated aqueous NH₄Cl (2mL) was added and the mixture allowed to warm up to room temperature and added to H₂O (20 mL). The mixture was extracted with Et₂O (2 x 20 mL) and the extract washed with saturated aqueous NaHCO₃ (2 x 20 mL), H₂O (2 x 20 mL) and brine (2 x 20 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes : EtOAc 4 : 1) gave 20 (R = Ph) admixed with 21 (R = Ph) (5 : 1 by 13 C NMR) (75 mg, 80 %) as a viscous oil. The product was identical (TLC, 1 H NMR, 13 C NMR, MS) with a sample of 10 prepared from 7.

Ethyl (2*E*,4*E*)-Hexa-2,4-dienoate. (EtO)₂P(O)CH₂CO₂Et (3.2 g, 2.83 mL, 0.014 mL) was added dropwise to hexane (5 mL) washed NaH (60 % dispersion; 560 mg, 0.014 mol) and THF (5 mL) at °C. After 5 min, the mixture was cooled to -78 °C and crotonaldehyde (1.0 g, 1.18 mL, 0.014 mol) was added dropwise, the solution was allowed to warm up to room temperature, and quenched with saturated aqueous NH₄Cl (20 mL). The mixture was extracted with Et₂O (2 x 20 mL) and the organic phase was washed with H₂O (2 x 20 mL) and brine (2 x 20 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes : EtOAc 9 : 1) gave ethyl (2*E*,4*E*)-hexa-2,4-dienoate (1.17 g, 8.3 mmol, 60 %) as a colorless oil: R_f 0.30 (hexanes : EtOAc 19 : 1); IR (film) 2981, 1712, 1645, 1619, 1327, 1260, 1244, 1188, 1139 999 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.26 (dd, 1H, *J* 15.5, 10.5 Hz), 6.15 (m, 2H), 5.74 (d, 1H, *J* 15.5 Hz), 4.16 (q, 2H, *J* 7.1 Hz), 1.82 (d, 3H, *J* 5.1 Hz), 1.26 (t, 3H, *J* 7.1 Hz); ¹³C NMR (CDCl₃, 67.8 MHz) δ 167.4, 144.9, 139.2, 129.9, 119.2, 60.2, 18.6, 14.4; MS (CI, NH₃) m/z 158 (M+NH₄)⁺, 141 (M+H)⁺, 125, 95; HRMS (CI, NH₃) m/z calcd for C₈H₁₂O₂: (M+H)⁺, 141.0916; found: (M+H)⁺, 141.0930.

(2*E*,4*E*)-Hexa-2,4-dien-1-ol (18, R = Me). DIBAL-H in hexanes (1.0 M; 15.2 mL, 15.2 mmol) was added dropwise with stirring to ethyl (2*E*,4*E*)-hexa-2,4-dienoate (970 mg, 7.0 mmol) in CH₂Cl₂ (20 mL) at -78 °C. After 1 h, EtOH (20 mL) and saturated aqueous Na₂SO₄ (10 mL) were added sequentially and the mixture was allowed to warm up to room temperature. Filtration through Celite (CH₂Cl₂), rotary evaporation and chromatography (EtOAc: hexanes 1:9) gave 18 (R = Me) (620 mg, 6.6 mmol, 94 %) as a colorless oil: R_f 0.21 (hexanes: EtOAc 4:1) IR (film) 3500-3300, 2960, 987 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 6.12 (dd, 1H, *J* 15.2, 10.4 Hz), 5.95 (br. dd, 1H, *J* 15.1, 10.4 Hz), 5.62 (m, 2H), 4.05 (d, 2H, *J* 6.0 Hz), 2.04 (br. s, 1H), 1.64 (br. d, 3H, *J* 6.8 Hz); ¹³C NMR (CDCl₃, 75.1 MHz) δ 131.6, 130.8, 129.8, 129.3, 63.1, 18.0; MS (CI, NH₃) m/z 98 (M⁺·), 83, 41; HRMS (CI, NH₃) calcd for C₆H₁₀O: (M⁺·), 98.0732; found: (M⁺·), 98.0717.

(1*SR*,3*RS*,4*RS*,6*RS*)-1-Hydroxymethyl-6-methylbicyclopropane (20, R = Me). Double cyclopropanation of diene 18 (R = Me) (78 mg, 0.8 mmol) as for diene 18 (R = Ph) using Et₂Zn in hexanes (1.0 M; 8.0 mL) and CH₂I₂ (1.2 mL, 16 mmol) in ClCH₂CH₂Cl (2 mL), work-up and chromatography (hexanes : EtOAc 8 : 2) gave 20 (R = Me) admixed with 21 (R = Me) (5 : 1; 61 mg, 61 %): R_f 0.21 (hexanes : EtOAc 4 : 1); IR (film) 3500-3300, 2970, 1490 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 3.48 - 3.34 (m, 2H), 0.97 (d, 3H, *J* 6 Hz), 0.86 (m, 1H), 0.68 (m, 1H), 0.5 (m, 2H), 0.3 (m, 2H), 0.2 (m, 1H), 0.1 (m, 1H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 67.0, 20.8, 19.7, 18.9, 18.7, 11.6, 11.3, 8.6, (resolved minor isomer peaks: 19.9, 8.3); MS (CI, NH₃) m/z 126 (M+NH₄)⁺, 126 (M⁺⁻), 109, 95; HRMS (CI, NH₃) calc for C₈H₁₄O: (M+NH₄)⁺, 144.1388; found: (M+NH₄)⁺, 144.1382.

6-Methyl-2E,4E-heptadien-1-ol (18, R = iso Pr). Horner Emmons homologation of 4-methyl-2E-pentenal (0.35 g, 3.6 mmol) as for cinnamaldehyde using (EtO)₂P(O)CH₂CO₂Me (0.8 mL, 4.3 mmol) and chromatography (hexanes: EtOAc 95:5) gave crude methyl 6-methyl-2E, 4E-heptadienoate (0.55 g, 99%) as a colorless oil: R_f 0.2 (hexanes: EtOAc 19:1); IR (film) 2962, 1720, 1630, 1110, 975 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.25 (m, 1H), 6.13 (m, 2H), 5.79 (d, 1H, J 15.3 Hz), 3.73 (s, 3H), 2.38 (heptet, 1H, J 6.7 Hz), 1.04 (d, 6H, J 6.7 Hz); ¹³C NMR (CDCl₃, 75.1 MHz) δ 167.6, 151.3, 145.5, 125.5, 118.9, 51.3, 31.5, 21.8; MS (CI, NH₃) m/z 172 (M+NH₄)+, 155 M+NH₄-H₂O)+; HRMS (CI, NH₃) calcd for C₉H₁₄O₂: (M+NH₄)+, 172.1338; (M+H)+, 155.1072; found: (M+NH₄)+, 172.1326; (M+H)+, 155.1072. Since the ¹H and ¹³C NMR spectra showed the presence of impurities, crude methyl 6-methyl-2E, 4E-heptadienoate (0.55) g, 3.6 mmol) was directly reduced with DIBAL-H as for ethyl (2E,4E)-5-phenyl-2,4-pentadienoate to provide the pure dienol 18 (R = iso Pr) (358mg, 80%) as a colorless oil: R_f 0.15 (hexanes: EtOAc 4:1); IR (film) 3390, 2960, 987 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) 8 6.04 (dd, 1H, J 15.2, 10.4 Hz), 5.86 (dd, 1H, J 15.1, 10.4 Hz), 5.55 (m, 2H), 3.99 (d, 2H, J 6.0 Hz), 2.20 (heptet, 1H, J 6.8 Hz), 1.62 (br. s, 1H), 0.85 (d, 6H, J 6.8Hz); ¹³C NMR (CDCl₃, 75.1 MHz) δ 142.9, 132.5, 129.9, 126.7, 63.8, 31.3, 22.5; MS (CI, NH₃) m/z 126 (M+NH₄-H₂O)⁺, 109, 82; HRMS (CI, NH₃) calcd for C₈H₁₆N: (M+NH₄-H₂O)⁺, 126.1282; found: (M+NH₄-H₂O)+, 126.1274.

(1SR,3RS,4RS,6SR)-1-(Hydroxymethyl)-6-(2-propyl)bicyclopropane (20, R = iso Pr). Double cyclopropanation of diene 18 (R = iso Pr) (126 mg, 1.0 mmol) as for diene 18 (R = Ph) using Et₂Zn in hexanes (1.0 M; 10.0 mL) and CH₂I₂ (1.4 mL, 20 mmol) in ClCH₂CH₂Cl (5.0 mL), work-up and chromatography

(hexanes: EtOAc 9: 1) gave **20** (R = iso Pr) admixed with **21** (R = iso Pr) (6: 1, 72%) as a viscous oil: R_f 0.2 (hexanes: EtOAc 4: 1); IR (film) 3390, 2960, 1490, 1020 cm⁻¹; 1 H NMR (CDCl₃, 270 MHz) δ 3.4 (m, 2H), 1.6 - 0.8 (m, 9H), 0.75 (m, 1H), 0.54 (m, 2H), 0.29 - 0.15 (m, 4H); 13 C NMR (CDCl₃, 75.1 MHz) δ 67.0, 32.8, 25.2, 22.2, 21.9, 20.0, 18.8, 18.7, 9.8, 8.3, (minor isomer showed 25.5, 19.6, 18.6, 9.5, 8.5); MS (CI, NH₃) m/z 172 (M+NH₄)+, 154 (M+·), 137, 95, 81; HRMS (CI, NH₃) calcd for $C_{10}H_{18}O$: (M+NH₄)+, 172.1701; found: (M+NH₄)+, 172.1702. Pyridine (1 drop) was added to alcohol **20** admixed with **21** (R = iso Pr) (15 mg, 0.1 mmol) and phenyl isocyanate (13 μ L, 0.12 mmol) in DMF (3 mL) and the mixture stirred overnight, diluted with H₂O and extracted with Et₂O (2 x 10mL). The organic extracts were washed with H₂O (2 x 10 mL) and brine (2 x 10 mL) and dried. Rotary evaporation and chromatography (EtOAc: hexanes 1: 4) gave the crude (1SR,3RS,4RS,6SR)-1-[phenylamino(carbonyl)oxymethyl]-6-(2-propyl)bicyclopropane as a viscous oil: R_f 0.3 (hexanes: EtOAc 19: 1); IR (film) 2953, 2930, 1708, 1601, 1539, 1444, 1224 cm⁻¹; 1 H NMR (CDCl₃, 270 MHz) δ 7.62 - 7.42 (m, 4H), 7.29 - 7.23 (m, 1H), 6.8 (br. s, 1H), 4.23 - 4.13 (m, 2H), 1.4 - 0.95 (m), 0.88 - 0.77 (m, 1H), 0.6 - 0.53 (m, 2H), 0.44 - 0.38 (m, 4H); MS (CI, NH₃) m/z 291 (M+NH₄)+, 274.1824.

Ethyl (2*E*)-3-Cyclohexyl-2-propenoate. (EtO)₂P(O)CH₂CO₂Et (4.0 mL, 20.0 mL) was added dropwise to hexanes washed NaH (60 % dispersion; 800 mg, 20.0 mmol) and THF (5 mL) at °C. After 5 min, the mixture was cooled to -78 °C and cyclohexylcarboxaldehyde (2.24 g, 2.42 mL, 20.0 mmol) was added dropwise and the mixture was allowed to warm up to room temperature whereupon it was quenched with saturated aqueous NH₄Cl (20 mL). The mixture was extracted with Et₂O (2 x 20 mL) and the organic phase was washed with H₂O (2 x 20 mL) and brine (2 x 20 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes : EtOAc 97 : 3) gave ethyl (2*E*)-3-cyclohexyl-2-propenoate (3.21 g, 88 %) as a colorless oil: R_f 0.2 (hexanes : EtOAc 19 : 1); IR (film) 2980, 2927, 2853, 1722, 1650, 1309, 1275, 1171 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 6.85 (dd, 1H, *J* 15.8, 6.8 Hz), 5.69 (d, 1H, *J* 15.8 Hz), 4.12 (q, 2H, *J* 7.1 Hz), 2.06 (m, 1H), 1.7 - 1.6 (m, 5H), 1.22 (t, 3H, *J* 7.1 Hz), 1.25 - 1.05 (m, 5H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 167.0, 154.1, 118.9, 60.0, 40.4, 31.7, 25.9, 25.7, 14.2; MS (CI, NH₃) m/z 200 (M+NH₄)+, 183 (M+H)+; HRMS (CI, NH₃) calcd for C₁₁H ₁₈O₂: (M+NH₄)+, 200.1651; (M+H)+, 183.1385; found: (M+NH₄)+, 200.1644; (M+H)+, 183.1402.

(2E)-3-Cyclohexyl-2-propen-1-ol. DIBAL-H reduction of ethyl (2E)-3-cyclohexyl-2-propenoate (1.66 g, 9.1 mmol) as for alcohol 18 (R = Ph) and chromatography (EtOAc : hexanes 1 : 9) gave (2E)-3-cyclohexyl-2-propen-1-ol (1.27 g, 9.07 mmol, 99 %) as a colorless oil: R_f 0.2 (hexanes : EtOAc 3 : 1); IR (film) 3400-3300, 2924, 2851, 969 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 5.6 (m, 2H), 4.07 (br. d, 2H, J 4.4), 2.05 (m, 1H), 1.8 - 1.6 (m, 5H), 1.4 - 1.0 (m, 5H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 139.0, 126.5, 63.9, 40.3, 32.8, 26.2, 26.0; MS (CI, NH₃) m/z 158 (M+NH₄)+, 140 (M+NH₄-H₂O)+, 123, 81; HRMS (CI, NH₃) calcd for C9H₁₆O: (M+NH₄)+, 158.1545; (M+NH₄-H₂O)+, 140.1439; found: (M+NH₄)+, 158.1540; (M+NH₄-H₂O)+, 140.1446.

(2*E*)-3-Cyclohexyl-2-propenal. DMSO (0.66 mL, 9.3 mmol) in CH₂Cl₂ (2 mL) was added dropwise with stirring to oxalyl chloride in CH₂Cl₂ (2.0 M; 2.3 mL, 4.6 mmol) in CH₂Cl₂ (20 mL) at -78 °C. After 0.5 h, (2*E*)-3-cyclohexyl-2-propen-1-ol (0.43 g, 3.1 mmol) in CH₂Cl₂ (5 mL) was added dropwise and the resulting mixture was stirred at -78 °C for 1h when Et₃N (2.6 mL, 18.0 mmol) was added. The mixture was allowed to warm up to 0 °C, added to H₂O (50 mL) and extracted with Et₂O (2 x 50 mL). The organic phase was washed with H₂O (2 x 50 mL) and brine (2 x 50 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 97: 3) gave (2*E*)-3-cyclohexyl-2-propenal (330 mg, 78 %) as a colorless oil: R_f 0.7 (hexanes: EtOAc; 19: 1); IR (film) 2928, 2853, 2810, 1691, 1631, 1449, 1121, 1099, 976 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 9.46 (d, 1H, *J* 7.8 Hz), 6.76 (dd, 1H, *J* 15.7, 6.6 Hz), 6.10 (dd, 1H, *J* 15.7, 7.8 Hz), 2.25 (m, 1H), 1.85 - 1.6, 1.4 - 1.1 (m, 10H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 194.6, 163.8, 130.7, 40.9, 31.6, 25.9, 25.7; MS (CI, NH₃) *m/z* 156 (M+NH₄)+, 94, 81; HRMS (CI, NH₃) calcd for C₉H₁₄O: (M+NH₄)+, 156.1388; found: (M+NH₄)+, 156.1387.

Ethyl (2*E*, 4*E*)-5-Cyclohexyl-2,4-pentadienoate. Horner-Emmons homologation of (2*E*)-3-cyclohexyl-2-propenal (330 mg, 2.4 mmol) as for cinnamaldehyde and chromatography (hexanes : EtOAc 9 : 1) gave ethyl (2*E*, 4*E*)-5-cyclohexyl-2,4-pentadienoate (405 mg, 81 %) as a colorless oil: R_f 0.2 (hexanes : EtOAc 9 : 1); IR (film) 2925, 1705, 1620, 1110, 975 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.24 (dd, 1H, *J* 15.4, 10.0 Hz), 6.05 (m, 2H), 5.78 (d, 1H, *J* 15.4 Hz), 4.18 (q, 2H, *J* 7.1 Hz), 2.08 (m, 1H), 1.8 - 1.6 (m, 5H), 1.28 (t, 3H, *J* 7.1 Hz), 1.4 - 1.0 (m, 5H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 167.6, 150.4, 145.8, 126.2, 119.7, 60.5, 41.4, 32.7, 26.4, 26.2, 14.7; MS (CI, NH₃) m/z 226 (M+NH₄)+, 209 (M+H)+, 163; HRMS (CI, NH₃) calcd for C₁₃H₂₀O₂: (M+H)+, 209.1542; found: (M+H)+, 209.1537.

(2*E*, 4*E*)-5-Cyclohexyl-2,4-penten-1-ol (18, $R = c-C_6H_{11}$). DIBAL-H reduction of ethyl (2*E*, 4*E*)-5-cyclohexyl-2,4-pentadienoate (400 mg, 1.9 mmol) as for ethyl (2*E*,4*E*)-5-phenyl-2,4-pentadienoate and chromatography (hexanes: EtOAc 9: 1) gave dienol 18 ($R = c-C_6H_{11}$) (260 mg, 82 %) as a colorless oil: R_f 0.2 (hexanes: EtOAc 4: 1); IR (film) 3350 - 3330, 2919, 2851, 1640, 1448, 967 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 6.25 (dd, 1H, *J* 14.8, 10.2 Hz), 6.05 (dd, 1H, *J* 15.3, 10.4 Hz), 5.78 (m, 2H), 4.15 (m, 2H), 2.02 (m, 1H), 1.73 (m, 5H), 1.4 - 1.0 (m, 5H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 141.5, 132.5, 129.4, 126.9, 63.5, 40.7, 32.8, 26.2, 26.0; MS (EI) m/z 166 (M⁺·), 148, 135, 67; HRMS (EI) calcd for $C_{11}H_{18}O$: (M⁺·), 166.1358; found: (M⁺·), 166.1349.

(1*SR*,3*RS*,4*RS*,6*SR*)-6-Cyclohexyl-1-(hydroxymethyl)bicyclopropane (20, $R = c-C_6H_{11}$) Double cyclopropanation of diene 18 ($R = c-C_6H_{11}$) (83 mg, 0.5 mmol) as for diene 18 (R = Ph) using Et₂Zn in hexanes (1.0 M; 5.0 mL) and CH₂I₂ (0.9 mL, 10 mmol) in ClCH₂C H₂Cl (3 mL), work-up and chromatography (hexanes: EtOAc 8: 2) gave 20 ($R = c-C_6H_{11}$) admixed with 21 ($R = c-C_6H_{11}$) (7: 1; 76 mg, 78%) as a viscous oil: R_f 0.2 (hexanes: EtOAc 4: 1); IR (film) 3350, 2960, 2850, 1460, 1030 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 3.44 (m, 2H), 1.72 (m, 6H), 1.3 - 0.95 (m, 10H), 0.86 (m, 1H), 0.72 (m, 1H), 0.56 (m, 2H), 0.29 - 0.15 (m, 4H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 67.1, 42.5, 33.2, 32.8, 26.7, 26.4, 23.7, 20.2, 18.8, 18.4, 9.5, 8.4, (minor isomer showed 24.1, 19.8, 18.7, 9.3, 8.8); MS (CI, NH₃) m/z 212

 $(M+NH_4)^+$, 194 (M^+) , 177, 135, 121; HRMS (CI, NH₃) calcd for $C_{13}H_{22}O$: $(M+NH_4)^+$, 212.2014; found: $(M+NH_4)^+$, 212.2030.

(2E, 4E)-6-(t-Butyldiphenylsilyloxy)-2,4-hexadien-1-ol (18, R = CH₂OSiPh₂tBu). Muconic acid (3.0 g, 0.021 mol) in SOCl₂ (40 mL) was heated to reflux for 72 h, evaporated, the resulting solid was redissolved in dry PhMe (35 mL), cooled to 0 °C and EtOH (10 mL) was added with stirring. After 1h, Et₃N (10 mL) was added, the mixture was allowed to warm up to room temperature over 1 h, diluted with Et₂O (50 mL) and washed with H₂O (2 x 50 mL) and brine (2 x 50 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 9: 1) gave diethyl muconate ²⁸ (2.3 g, 55 %) which was used directly in the next step. DIBAL-H in hexanes (1.0 M; 25.0 mL, 25.0 mmol) was added dropwise to diethyl muconate (1.22 g, 6.2 mmol) in CH₂Cl₂ (25 mL) at -78 °C. After 1 h, EtOH (20 mL) and saturated aqueous Na₂SO₄ (10 mL) were added in sequence and the mixture allowed to warm up to room temperature. Filtration through Celite (CH₂Cl₂: EtOH 4: 1), rotary evaporation and chromatography (hexanes: EtOAc 3: 7) gave (2E, 4E)-hexadiene-1.6-diol (0.68 g, 97 %) which was used directly in the next step. (2E, 4E)-Hexadiene-1,6-diol (200 mg, 1.75 mmol), t-butylchlorodiphenylsilane (0.67 mL, 0.71 g, 2.6 mmol), imidazole (0.24 g, 3.5 mmol), and 4-(N,N-dimethylamino)pyridine (10 mg) in DMF (5 mL) were allowed to stand for 14 h. The mixture was diluted with H₂O (20 mL) and extracted with Et₂O (2 x 30 mL). The organic phase washed with saturated aqueous NH₄Cl (2 x 20 mL), H₂O (2 x 20 mL) and brine (2 x 20 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 4:1) gave 18 (R = CH₂OSiPh₂tBu) (292 mg, 47 %) as white solid: mp. 20-22 °C; Rf 0.20 (hexanes: EtOAc 4:1); IR (film) 3450 - 3250, 2930, 2857, 1427, 1082, 988, 701 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.70 - 7.66 (m, 4H), 7.43 - 7.25 (m, 6H), 6.31 - 6.25 (m, 2H), 5.84 - 5.79 (m, 2H), 4.25 (d, 2H, J 4.9 Hz), 4.19 (d, 2H, J 5.9 Hz), 1.07 (s, 9H); 13C NMR (CDCl₃, 75.1 MHz) δ 135.6, 133.8, 132.9, 131.5, 131.1, 129.7, 129.0, 128.8, 64.1, 63.4, 26.9, 19.3; MS (CI, NH₃) m/z 274, 216, 196; Anal. calcd for C₂₂H₂₈O₂Si: C, 74.95; H 8.01; Found: C, 75.15; H, 7.85%.

(15R,3RS,4SR,6RS)-1-Hydroxymethyl-6-(t-butyldiphenylsilyloxymethyl)bicyclopropane (20, $R = CH_2OSiPh_2^tBu$). Et₂Zn in hexanes (1.0 M; 5 mL, 5 mmol) and CH_2I_2 (0.9 mL, 11 mmol) were sequentially added dropwise with stirring to 18 ($R = CH_2OSiPh_2^tBu$) (190 mg, 0.54 mmol) in $CICH_2CH_2CI$ (3 mL) at -12 °C. After 12 h, saturated aqueous NH_4CI (2mL) was added and the mixture allowed to warm up to room temperature, poured into H_2O (20 mL) and extracted with Et_2O (2 x 20 mL). The organic phase was washed with saturated aqueous $NaHCO_3$ (2 x 20 mL), H_2O (2 x 20 mL) and brine (2 x 20 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 4 : 1) gave 20 ($R = CH_2OSiPh_2^tBu$) (142 mg, 69 %) as a viscous oil: R_f 0.20 (hexanes: EtOAc 4 : 1); IR (film) 3395, 1112, 701, 823 cm⁻¹; IH NMR ($IRCDCI_3$, 270 MHz) & 7.68-7.64 (m, 4H), 7.44-7.36 (m, 6H), 3.60 (dd, 1H, $IRCDCI_3$, 67.8 MHz) & 135.7, 134.1, 129.6, 127.7, 67.2, 67.0, 27.0, 19.8, 19.3, 18.2, 17.8, 8.54, 8.48; MS ($IRCDCI_3$, 67.8 MHz) & 135.7, 134.1, 129.6, 127.7, 67.2, 67.0, 27.0, 19.8, 19.3, 18.2, 17.8, 8.54, 8.48; MS ($IRCDCI_3$) and $IRCDCI_3$ ($IRCDCI_3$) and $IRCDCI_3$) and $IRCDCI_3$ and $IRCDCI_3$ and $IRCDCI_3$ and $IRCDCI_3$ are such as a such

(1R,3S)-1-Hydroxymethyl-3-[3-(t-butyldiphenylsilyloxy)-1*E*-propen-1-yl]cyclopropane (23). Et₂Zn in hexanes (1.0 M; 0.59 mL, 0.59 mmol) was added dropwise to dienol 18 (R = CH₂OSiPh₂^tBu) (190 mg, 0.54)

mmol) in ClCH₂CH₂Cl (3 mL) at 0 °C. After 0.5 h and L(+)-diethyl tartrate (120 mg, 0.58 mmol) in ClCH₂CH₂Cl (1 mL) was added and the mixture was stirred for 1 h and cooled to -12 °C. Et₂Zn in hexanes (1.0M; 1.10 mL, 1.10 mmol) was added and stirring continued for 1 h when CH₂I₂ (0.29 g, 1.1 mmol) was added and stirring continued for 12 h. Saturated aqueous NH₄Cl (5 mL) was added and the mixture was extracted with Et₂O (2 x 15 mL). The organic phase was washed with 10 % NH₄Cl (15 mL), H₂O (2 x 15 mL) and brine (2 x 15 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes : EtOAc 4 : 1) gave cyclopropane **23** (132 mg, 67 %) as a colorless oil: R_f 0.20 (hexanes : EtOAc 7 : 3); [α]_D -12.7 ° (c = 1.0); IR (film) 3400 - 3330, 2931, 2857, 1472, 1427, 1112, 1051, 1009, 998, 962, 909, 823, 735, 702 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.70 - 7.64 (m, 4H), 7.44 - 7.36 (m, 6H), 5.63 (dt, 1H, J 15.2, 5.6 Hz), 5.23 (ddd, 1H, J 15.3, 8.3, 1.5 Hz), 4.15 (dd, 2H, J 5.6, 1.5 Hz), 3.50 (dd, 2H, J 6.9, 2.5 Hz), 1.33 (m, 1H), 1.08 (m, 1H), 1.05 (s, 9H), 0.68 - 0.59 (m, 2H); ¹³C NMR (CDCl₃, 67.8 MHz) δ 135.6, 133.9, 133.2, 129.6, 127.7, 127.2, 66.4, 64.5, 26.9, 23.0, 19.3, 11.6; MS (CI, NH₃) m/z 384 (M+NH₄)⁺, 387 (M+H)⁺, 111; HRMS (CI, NH₃) calcd for C₂₃H₃₀O₂Si: (M+NH₄)⁺, 384.2359; found: (M+NH₄)⁺, 384.2359.

(1R,3S,4R,6S)-1-Hydroxymethyl-6-(t-butyldiphenylsilyloxymethyl)bicyclopropane (24). Et₂Zn in hexanes (1.0 M; 1.35 mL, 1.35 mmol) and CH₂I₂ (0.75 g, 2.7 mmol) were added with stirring to cyclopropyl alkene 23 (100 mg, 0.27 mmol) in ClCH₂CH₂Cl (5 mL) at -20 °C. After 24 h, saturated aqueous NH₄Cl (5 mL) was added and the mixture was extracted with Et₂O (2 x 15 mL). The organic phase was washed with 10 % NH₄Cl (15 mL), H₂O (2 x 15 mL) and brine (2 x 15 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes : EtOAc 4 : 1) gave the bicyclopropane 24 (82 mg, 79 %) as a colorless oil: R_f 0.20 (hexanes : EtOAc; 4 : 1); $[\alpha]_D$ -9.2 ° (c = 1.0). The sample was spectroscopically identical with racemic material prepared directly from dienol 18 (R = CH₂OSiPh₂¹Bu).

(1*R*,3*S*,4*R*,6*S*)-1,6-Bis(t-butyldiphenylsilyloxymethyl)bicyclopropane (25). Bicyclopropanemethanol 24 (50 mg, 0.13 mmol), t-butyldiphenylchlorosilane (0.067 mL, 71 mg, 0.26 mmol), imidazole (24 mg, 0.35 mmol), and 4-*N*,*N*-dimethylaminopyridine (1 mg) in DMF (1 mL) were allowed to stand for 14 h, diluted with H₂O (10 mL) and extracted with Et₂O (2 x 10 mL). The organic phase was washed with saturated aqueous NH₄Cl (2 x 10 mL), H₂O (2 x 10 mL) and brine (2 x 10 mL), dried, and filtered. Rotary evaporation and chromatography (hexanes: EtOAc 8: 2) gave the bicyclopropane 25 (67 mg, 82 %) as a viscous oil: R_f 0.7 (hexanes: EtOAc 19: 1); [α]_D -0.2 ° (c = 1.0); IR (film) 2930, 2857, 1427, 1111, 1088, 823, 738, 700, 689 cm⁻¹; ¹H NMR (CDCl₃, 270 MHz) δ 7.70 - 7.66 (m, 8H), 7.43 - 7.25 (m, 12H), 3.56 (dd, 2H, *J* 10.7, 6.0 Hz), 3.43 (dd, 2H, *J* 10.7, 6.6 Hz) 1.05 (s, 18H), 0.80 (m, 2H), 0.65 - 0.63 (m, 2H), 0.24 - 0.19 (m, 4H); ¹³C NMR (CDCl₃, 75.1 MHz) δ 135.6, 134.1, 129.6, 127.6, 67.2, 29.7, 26.9, 19.2, 17.8, 8.3; MS (CI, NH₃) *m/z* 636 (M+NH₄)+, 398, 363, 196, 107; HRMS (CI, NH₃) calcd for C₄₀H₅₀O₂Si₂: (M+NH₄)+, 636.3693; found: (M+NH₄)+, 636.3660.

Acknowledgements: We thank Glaxo Group Research Ltd for the most generous Glaxo endowment (to A.G.M.B), the Wolfson Foundation for establishing the Wolfson Centre for Organic Chemistry in Medical Science, the James Black Foundation, Merck Sharp & Dohme Research Laboratories, Myco Pharmaceuticals Inc., Parke Davis, Pfizer Central Research The Proctor and Gamble Company,

Quest International, Rhône-Poulenc Rorer Ltd, Roche Products Ltd., Rohm and Haas Company, G.D. Searle & Company, SmithKline Beechams and ZENECA Corporate Research and Technology for generous support of our program.

REFERENCES

- Yoshida, M.; Ezaki, M.; Hashimoto, M.; Yamashita, M.; Shigematsu, N.; 1 Okuhara, M.; Kohsaka, M.; Horikoshi, K. J. Antibiotics 1990, 43, 748.
- Barrett, A. G. M.; Kasdorf, K.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1994, 1781. 2 Barrett, A. G. M.; Kasdorf, K.; White, A. J. P.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1995, 649.
- Barrett, A. G. M.; Kasdorf, K.; Tustin, G. J.; Williams, D. J. J. Chem. Soc., Chem. Commun. 3 1995, 1143. Barrett, A. G. M.; Doubleday, W.W.; Kasdorf, K.; Tustin, G.J. J. Org. Chem. **1996**, 61, 1082.
- Barrett, A. G. M.; Kasdorf, K. J. Chem. Soc., Chem. Commun. 1996, 325. 4
- Falck, J. R.; Mekonnen, B.; Yu, J.; Lai, J.-Y. J. Am. Chem. Soc. 1996, 118, 6096.
- 6 Yoshida, M.; Horikoshi, K. United States Patent 4,803,074; Fujisawa Pharmaceutical Co., Ltd.: Japan, Feb. 7, 1989.
- Kuo, M. S.; Zielinski, R. J.; Cialdella, J. I.; Marschke, C. K.; Dupuis, M. J.; Li, G. P.; 7 Kloosterman, D. A.; Spilman, C. H.; Marshall, V. P. J. Am. Chem. Soc. 1995, 117, 10629.
- Barrett, A. G. M.; Hamprecht, D.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1996, 8 118, in press.
- Buchert, M.; Reissig, H.U. Chem. Ber. 1992, 125, 2723.
- Nijveldt, D.; Vos, A. Acta Crystallogr., Sect. B: Struct. Sci. 1988, B44, 281, 289, 296. 10
- Barrett, A. G. M.; Doubleday, W.W.; Tustin, G. J.; White, A. J. P.; Williams, D. J. J. Chem. 11 Soc., Chem. Commun. 1994, 1783.
- 12
- Barrett, A. G. M.; Tustin, G. J. J. Chem. Soc., Chem. Commun. 1995, 355.
 Barrett, A. G. M.; Doubleday, W. W.; Kasdorf, K.; Tustin, G. J.; White, A. J. P.; Williams, D. 13 J. J. Chem. Soc., Chem. Commun. 1995, 407.
- 14
- 15
- Theberge, C. R.; Zercher, C. K. Tetrahedron Lett. 1994, 35, 9181. Theberge, C. R.; Zercher, C. K. Tetrahedron Lett. 1995, 36, 5495. Armstrong, R. W.; Maurer, K., W. Tetrahedron Lett. 1995, 36, 357. 16
- 17 I.Arai, I.; Mori, A.; Yamamoto, H. J. Am. Chem. Soc., 1985, 107, 8524. Mori, A.; Arai, I.; Yamamoto, H. Tetrahedron, 1986, 42, 6447. Ukaji, Y.; NishimuraM.; Fujisawa, T. Chemistry Lett., 1992, 61.
- 18
- 19 Wehrli, F.W.; Marachand, A.P.; Wehrli, S. Interpretation of Carbon-13 NMR Spectra, 1988, 2nd Edn., Wiley and Sons, New York, p 405.
- 20 Charette, A. B.; Juteau, H. J. Am. Chem. Soc. 1994, 116, 2651.
- Charette, A. B.; Prescott, S.; Brochu, C. J. Org. Chem. 1995, 60, 1081. 21
- Manganey, P.; Grojean, F.; Alexakis, A.; Normant, J.F. Tetrahedron Lett., 1988, 29, 2675. Manganey, P.; Grojean, F.; Alexakis, A.; Normant, J.F. Tetrahedron Lett., 1988, 29, 2677. 22
- 23
- 24 Helquist, P. Comprehensive Organic Synthesis, 1984, volume 4, Ed. Trost, B.M.; Fleming, I.; Semmelhack, M.F. Pergamon Press, New York, p 968.
- Tanaka, K.; Yamagishi, N.; Tanikaga, R.; Kasi, A. Chem. Lett., 1976, 917. 25
- Wadsworth, W.S. Jnr.; Emmons, W.D. J. Am. Chem. Soc., 1961, 83, 1733. 26
- Solladie, G.; Demailly, G.; Greck, C. Tetrahedron Lett., 1985, 26, 435. 27
- 28 Guha, P.C.; Sankaran, D.K. Organic Synthesis, Ed. Horning, E.C. J. Wiley, New York, 1955, collective volume 3, 623.
- 29 Still, W. C., Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.